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Crystalline symmetries play an important role in the classification of band structures, and the
rich variety of spatial symmetries in solids leads to various topological crystalline phases (TCPs).
However, compared with topological insulators and Dirac/Weyl semimetals, relatively few realis-
tic materials candidates have been proposed for TCPs. Based on our recently developed method
for the efficient discovery of topological materials using symmetry indicators, we explore topolog-
ical materials in five space groups (i.e. SGs87,140,221,191,194), which are indexed by large
order strong symmetry based indicators (Zs and Zi2) allowing for the realization of several kinds
of gapless boundary states in a single compound. We predict many TCPs, and the representa-
tive materials include: Pt3Ge(SG140), graphite(SG194), XPt3 (§G221,X=Sn,Pb), AusTi (S5G87)
and TizSn (§G194). As by-products, we also find that AgXF3 (§G140,X=Rb,Cs) and AgAsX
(8G194,X=Sr,Ba) are good Dirac semimetals with clean Fermi surface. The proposed materials
provide a good platform to study the novel properties emerging from the interplay between different

types of boundary states.

Since the discovery of two-dimensional (2D) and three-
dimensional (3D) topological insulators (TIs), band
topology in condensed-matter materials has attracted
broad interest owing to their rich scientific implications
and potential for technological applications [1, 2]. De-
scribed by Zs topological invariant(s), time-reversal (7))
invariant TIs are characterized by an insulating gap in
the bulk and 7-protected gapless modes on the bound-
ary of the system [1, 2]. Soon after the discovery of TIs,
it was realized that symmetry plays an important role
in the classifications of topological phases. Based on the
absence or presence of T, particle-hole or chiral symme-
try, insulators and superconductors have been classified
into the so-called ten-fold periodic table [3].

In addition to the aforementioned internal symmetries,
the topological classification of band structures has also
been extended to include crystalline symmetries [4-6],
and due to the vast array of crystal symmetries (encap-
sulated by the 230 crystalline space group (SG)), mas-
sive topological crystalline phases (TCPs) have been pro-
posed, such as: mirror Chern insulator [7], quantized
electric multipole insulators [8], high order topological in-
sulator [8-12], hourglass fermions [13], nodal-chain met-
als [14], unconventional quasiparticles with three-fold (or
higher) band degeneracies [15] etc. Very recently, by ex-
ploiting the mismatch between the real and momentum-
space descriptions of the band structure, novel forms of
band topology in the 17 wallpaper groups [16], the 230
(8§Gs) for nonmagnetic compounds [17, 18], and the 1651
magnetic SGs for magnetic materials have been proposed
[19]. Currently, the standard way for finding topological
materials is based on the evaluation of various topologi-
cal invariants [4-7, 9, 13, 20-31]. As the calculation for
topological invariants is usually a time-consuming task,
the finding of any realistic topological materials is typi-
cally taken as a big success [1, 2, 6, 7, 13-15, 32-35]. The
discovered topological compounds represents a very small

fraction of the experimentally synthesized materials tab-
ulated in structure databases [36]. Thus, the search for
new T'CPs with novel properties is of both fundamental
and technological importance, and we address this issue
by our recently developed method for diagnosing topo-
logical materials [37].

Our method integrates the recently established the-
ory of symmetry indicators (SI) of band topology into
first-principle band-structure calculations [16-19, 37]. As
shown in Ref.[37], after standard electronic structure
calculation, one needs only to calculate the represen-
tations of filled energy bands at high-symmetry points,
i.e. mf which can be written as a formal vector: n =
(v,ny,, Ny, ;- - ), where v is the total number of the filled
energy bands, the subscript ki, ks, ..., ky denotes the
high symmetry point (HSP) in the BZ, the superscript
1,2,...,q;,...refers to the irreducible representation (ir-
rep) of little group at k; point (Gy, ), and ny’ means the
number of times an «; irrep of Gy, appears among the
filled bands.

It was realized that the set of vectors m forms an
abelian group [16, 17]. Moreover, for every SG, there
exists da; atomic insulator (AI) basis vectors (a;,i =
1,2,...,da1) containing information of the group struc-
ture for the symmetry-based indicator (SI), denoted by
Xpg in Ref. 17, according to the possible common factor
C; for a; [17]. One can always expand any vector n with

d
respect to the Al basis vectors a;: n :ffqiai. The ex-
i=1
pansion coefficients of n on the Al basis can be classified
into three cases [37]: Case 1: the expansion coefficients
q;'s are all integers; such materials might be adiabatically
connected to a trivial atomic insulator, and so we do not
consider materials in this case. Case 2: the expansion
coefficients ¢;'s are not all integers, but all ¢;C;'s are
integers; such materials are necessarily topological and
the results of (¢;C; mod C;), gives the nonvanishing



SI [37]. Case 3: the ¢;C;’s are not all integers; such
systems are (semi-)metallic. Specifically, if nf is non-
integer then there is band crossing happens at k; point;
on the other hand, if all the n’s are integers, then there
must be band crossing in high symmetry line or plane
[37].

There are various topological invariants, which corre-
spond to different kinds of band topology. During the
regular searches for topological materials, one need to
decide which topological invariant to evaluate. More-
over, usually the calculations for the topological invari-
ants are a computationally heavy task. In stark contrast
to conventional target-oriented searches, our algorithm
does not presuppose any specific phase of matter. Based
on the expansion coefficients, which are very easy to cal-
culate, one can quickly identify the topological (semi-
Jmetals, topological insulators and topological crystalline
insulators [37]. The high efficiency of our method has
been demonstrated in Ref. 37, in which we discuss many
topological materials discovered based on their nontrivial
index in space groups with Zs or Z4 strong factor in the
SI group.

One of the hallmarks of topological phases is the bulk-
boundary correspondence [1, 2], and different types of
topological boundary states, such as Dirac surface states,
hourglass surface states, and more recently hinge states,
have been proposed. Thus, finding realistic materials
with the coexistence of various topological boundary
states is a very interesting issue. In this work we focus on
S8Gs with the larger strong factor in the SI group, X3g,
i.e., Zg and Z12, where various types of band topology are
expected [17, 25, 30]. These SIs are realized in SGs with
a high-degree of coexisting symmetries, such as (roto-
)inversion, mirror reflection, screw, and glide etc. There
are in total 12 and 6 SGs with strong Zg and Z15 SI factor
group, respectively [17]. Focusing on five SGs with Zg
or Zi2 strong SI group (i.e. SGs 87,140,221,191,194),
we search for interesting TCPs in a single sweep of the
crystal database [36] using the method delineated in Ref.
37. We only consider spin-orbital coupled non-magnetic
materials with < 30 atoms in their primitive unit cell.
We find a large number of TCPs with reasonably clean
Fermi surfaces. In the following, we present and dis-
cuss six representative topological crystalline insulators
(TCIs), and list others in Tables I and II. The 4 good
Dirac semimetals are discussed in the end.

I. Zs NONTRIVIAL TCI: Pt;Ge

We first search the nonsymmorphic $G140 (I4/mem),
which has 7 Al basis vectors: afgl‘m,i = 1,2,...,7.
Only 2 AT basis vectors (we label them as agg140
a?914%) have a common factor: 2 and 8 respectively.
Thus, the SI group of SG140 is X5¢™° = Zy x Zs.
There are 158 materials with small unit cell and without
magnetic atoms. The calculations based on our method
[37] identified 77 topological nontrivial compounds, with

and

SG | Xgs material(SI)
87 Z2 X Zg Au,q Ti
140 |Z2 X Zs PtgGe(04),SiTa2(11)

AIX(X=Sc,Y)(03)
XBg(X=Ca,Sr,Ba)(03)

221|Z4 x Zs | BeTi(03), CaPd(20),CsPbBrs(23)
CsGeBrs3(23),CsSnls(23)
CazPb0O(22),XPt3(X=Pb,Sn)(34)

TABLE I. The topological crystalline (TC) insulating mate-
rials for SGs87,140 and 221. These SGs all own the same
strong SI factor group: Zg but with different other weak SI
factor groups. The red color denotes the materials carefully
discussed in this work.

SG XBs material(SI)

191 ZG X Z12 XBQ(X:Mg,Ca)(52),SrB2(15),T1(33)
AlLi(4),AlC2Tas(1),CasNI(3)
graphite(4),NasCdSn(4)
MgPo(1),SiSr2(1)

Ti25n(6)

194 Zio

TABLE II. The TC insulating materials for SGs191 and 194.
These SGs all own the same strong SI factor group: Zi2 but
with different other weak SI factor groups. The red color
denotes the materials carefully discussed in this work.

27 belonging to case 2 while 50 being topological (semi-
Jmetals indicated by case 3. Further filtering by Fermi
level criteria which requires that the energy bands around
the Fermi level are clean as far as possible, we list the
relatively good materials in Table I. In the following, we
take Pt3Ge [38] as the example to analyze the detailed
topological properties.

Pt3Ge crystallize in the body-centered tetragonal
structure [38], where Ge occupies the 4b Wyckoff' posi-
tion, and Pt’s occupying two sets of inequivalent sites
in the 4a and 8h Wyckoff positions. There are in total
68 valence electrons in the primitive unit cell. Based on
ab initio calculation, we calculate the irrep multiplicities
n{'s for all the high symmetry points and all the cor-
responding irreps « for the 68 valence bands. We then
expand this calculated vector n on the 7 Al basis vectors:
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FIG. 1. The electronic band plot of TCI Pt3Ge within SG140.



n= 21-721 qiafgl‘m7 and obtain ¢ = (8,0,0, 1,2,1,—%).
Thus this material belongs to case 2, and is a TCI with
SI being (0,4). As seen from the electronic band plot in
Fig. 1, this material has large direct gaps through the k
path.

While from SI alone we can ascertain that Pt3Ge is
a TCI, to resolve the concrete form of band topology it
displays we have to evaluate additional topological in-
dices. First, we note that from the SI we can infer all
the Fu-Kane parity criterion [21] is silenced, i.e., the ma-
terial cannot be a strong nor weak TI. The enriched in-
version invariant J; [25, 30] (6; = (k1 mod 4)/2) is
also vanishing. Thus this material has boundary states
protected by symmetry operation containing n—fold axis
(n > 1) [25, 30]. Due to the rich point symmetry op-
erations in §G140 (whose point group is Dyy), several
topological phases may occur [25, 30]. We thus evaluate
the mirror Chern numbers for the (001) (Miller indices
with respect to the conventional lattice basis vectors) and
(110)-mirror planes by first principles calculations. Our
numerical results show that they are also all vanishing.
The glide, screw and S invariant is thus nonvanishing
[25, 30]. Thus it would have glide protected hourglass
surface states in (100) glide symmetric planes as the cor-
responding invariant is 1. The (001) screw invariant is
1 thus it would protect gapless hinge states along the c
direction.

II. Z:» NONTRIVIAL TCI: GRAPHITE

We also searched the 492 materials with
8G194(P63/mme, whose point group is Dgy) in
the database[36]. There are 52 and 254 materials
belonging to cases 2 and 3 respectively. It is worth
emphasizing that our results indicate that graphite [39]
is potentially a nontrivial insulator.

It is well-known that graphene (i.e. monolayer of
graphite) exhibits 2D massless Dirac excitation near
K/K' points [40]. The spin-orbit (SO) coupling (al-
though small), opens a topological gap (~0.0008 meV
[41]), making it, in principle, a 2D topological insulator
[42]. The direct stacking of graphene will then lead to a
weak topological insulator. The discovery of crystalline-
symmetry-protected band topology in graphite, the
ABABABAB. .. Bernal stacking of graphene, demon-
strates the possibilities of discovering topological mate-
rials even among the simplest elemental materials. We
thus present a detailed discussion in the following.

The SG194 owns 13 Al basis vectors af91947i =
1,2,...,13, where only the last one has a common factor,
which is 12. Thus X3§'°* = Z;2. The 16 valence bands
in graphite are found to have the expansion coefficients
qg=(2,0,—-1,-1,-1,-1,1,3, %) on the AI basis. Thus
the SI for graphite is 4 € Z15. The band structure is
shown in Fig. 2, where SO coupling opens a small gap
(around 0.025 meV) at the K point. The inversion in-
variant J; and three Fu-Kane weak topological invariants

FIG. 2.
S$G194.

The electronic band plot of TCI graphite within

[21] are found to be all vanishing. We then calculate the
(001)-mirror Chern number and find that it is —2. Thus
there would be gapless Dirac surface states in the (001)
mirror symmetric planes. In order to ascertain graphite’s
nontrivial topology, we then calculate the (120) plane’s
mirror Chern, and find that it is vanishing. Then it would
has 6-fold screw protected hinge states [25, 30]. It may
also have glide and rotation protected surface states as
dictated by the nonvanishing {c3!°|000} (in Seitz nota-
tion where the superscript of the point operation part
denotes that rotation axis and the subscript denotes the
rotation angle) rotation invariant and (010) glide invari-
ant [25, 30]. While graphite is generally associated with
small Fermi pockets, Ref. [43] proposed, based on the
observation of a semiconducting gap in small samples of
Bernal graphite, that these may arise from extrinsic ef-
fects. Thus , further experimental work would be of great
interest.

III. THE OTHER DISCOVERED TCIS

A. Weak TI coexisting with TCI in PbPt3(5G221)
and AuyTi(SG87)

The above two TC materials both have vanishing in-
version and weak topological invariants. We also discover
two materials, i.e. PbPt3 in G221 and AusTi in SG87
which have three weak topological indices [21] v; = 1 for
i = 1,2,3: they have inversion topological invariant &;
[25, 30] equal to 0 and 1, respectively.

PbPt3 crystallizes in the cubic structure with a prim-
itive Bravais lattice. The electronic band structure is
shown in Fig. 3. The material has 34 valence elec-
trons in the unit cell. The calculated n{'s for these
34 bands can be expanded on the 14 Al basis vec-
tors of $G221, and the expansion coefficients are g =
(0,0,0,0,0,—1,1,1,0,1,-1,—1,—%,—1). The last two
Al basis vectors own a common factor 4 and 8, respec-
tively. Thus the ST is (3,4) € Z4 x Zg. The parity calcu-
lations show that it is a weak topological insulator [21].
We also calculate the two mirror Chern numbers for (001)
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FIG. 3. The electronic band plots of TCIs PbPts within SG221 and Au4sTi within SG87 .

FIG. 4. The electronic band plot of TCI Ti2Sn within SG194.

mirror plane (k, = 0 or 7), and find that they are both
equal to —1. At the same time, the screw invariant of
{9034} is 1. Thus this material can host protected
hinge and surface states at the same time.

AuyTi [44] crystallizes in SG87 (I4/m), where Au and
Ti occupy 8h and 2a Wyckoff positions respectively. This
material is found to belong to case 2. We calculate the
parities and find that its strong topological invariant [21]
and inversion invariant [25, 30] are both vanishing i.e.,
vg = 0; = 0 while v; = v, = v3 = 1, so it is a weak TI.
Besides, the newly introduced invariant A [25] is found
to be 4 (mod 8). Our first principles calculations also
show that the mirror Chern number for the (001)-plane is
vanishing. Thus it would allow glide protected hourglass
surface states in glide {mo1|330} symmetric plane. It
can also host hinge states along (001) direction which are
protected by screw {c§°1|005} or {c§°1|005}.

B. TCI Ti»Sn in §G194

TioSn [45] within SG194 is found to be a TCIL. It has
large direct gaps everywhere except in a small area where
there are little electron and hole pockets. Our calculation

show that the SI is (6). Parity calculations show that
the inversion invariant §; [25, 30] is 1 while the strong
and weak topological invariants [21] vy 1 2 3 are all vanish-
ing. From first principles calculation, we find the mirror
Chern number for the (120) plane is -4. This high mirror
Chern number indicates that there should be multiple
Dirac cones in the (120) mirror symmetric plane. In or-
der to identify the band topology, we also calculate the
mirror Chern number of the (001) mirror plane, which is
found to be vanishing. Thus it can accommodate hour-
glass surface states in {mg10[001} or {mo10/303} glide
symmetric planes. c¢g around (010) can also protect sur-
face Dirac cones. Besides, inversion and screw {c2°![001}
can protect hinge states in corresponding hinges satisfy-
ing the corresponding symmetries.

IV. TOPOLOGICAL SEMIMETALS

Other than the TCIs, our method can also filter out
topological (semi-)metals when the expansion coefficients
belong to case 3. By further requiring relatively clean
Fermi surfaces, we identify AgXF3[46](X=Rb,Cs,5G140)
as good Dirac semimetals with Dirac points pinned
down to two high symmetry points (P and N), and
AgAsX[47, 48](X=Sr,Ba,5G194) as Dirac semimetals
with symmetry-protected band crossing at high symme-
try line, as shown in Fig. 5. These two materials families
realize the two sub-cases within case 3 that we discussed.
For the AgXF3 family, the high symmetry points P and
N both have only one 4-dimensional irrep while the filling
cannot be divided by 4. The filling-enforced Dirac points
at P or N are subjected to more symmetry restrictions
than those for the Dirac points in high symmetry line,
and consequently the Dirac dispersion is more isotropic.
For the AgAsX family, in the high symmetry line I'- A, the
A7 and Ag band crossing each other, resulting a Dirac
point protected by Cg,. The Fermi level exactly threads
the Dirac point.
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FIG. 5. The electronic band plots of Dirac semimetals AgAsBa within §G194 and AgCsF3 within SG140 .

Materials Statistics

FIG. 6. The statistics of topological materials search using the SI method. The number in each bar indicates the number of
materials for each case. Case 1 corresponds to the trivial situation, while case 2 and 3 correspond to topological band structures
and semimetals respectively. Requiring a minimal Fermi surface further reduces the number of viable candidates.

V. CONCLUSIONS AND PERSPECTIVES

In this work, based on our newly developed algorithm
[37], we search for topological materials indicated by Zg
and Zpo strong factors in the SI groups. Focusing on
S§Gs87,140,221,191,194, we predict many materials,
which exhibit coexistence of various gapless boundary
states due to the rich combination of various symmetry
operators in these highly symmetric SGs. Breaking the
symmetry operation directly affects (move or even gap)
the gapless topological boundary state, thus one may eas-
ily tune the novel properties of these predicted topologi-
cal materials through strain or boundary decoration.

It is worth mentioning that the electronic topological

phenomenon is widespread in real materials and as shown
in the Fig. 6, majority of the materials in the five SGs we
scanned belong to topological phases indicated by cases
2 and 3. In this manuscript, we only discuss the materi-
als with clean Fermi surfaces, since in these materials we
expect the transport properties to be dominated by the
topologically non-trivial states. Our scheme also finds
some good metal with big Fermi surfaces possessing non-
zero SI. One good example is MgBs. It is interesting to
contemplate on the possible interplay between its super-
conductivity [49] and band topology.

We hope that our proposed materials will enrich the set
of realistic topological crystalline materials and stimulate
related experiments. With the demonstrated efficiency,



our method [37] can be employed for a large-scale sys-
tematic search of the entire materials database, which
could lead to the discovery for many more new topologi-
cal materials.
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